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(2m - 1)!!= 13*5 (2in - 1), m > 0, 

=1 m =0. 

These expansions agree with those of Thompson [1] except that the factor of wX1/2 

has been inadvertently omitted in his paper and there is a sign error in his expansion 
for I,. (Apparently the author intended to include a factor 7-12 in defining the 
integrals, as the reciprocal factor is otherwise necessary in all the other expressions 
for the integrals in the paper. There are also other minor misprints in Eq. (2), the 
equation preceding it, and in the first, second, third, and fifth equations following 
Eq. (1).) 
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Singular and Invariant Matrices Under the 
QR Transformation* 

By Beresford Parlett 

0. Introduction. The above two classes of matrix are usually ignored in discus- 
sions of the QR algorithm [1], [3], [4]. Some familiarity with the algorithm is as- 
sumed. 

There are good reasons for this neglect. Firstly the algorithm is not well defined 
for singular matrices and thus its behavior is difficult to describe. Secondly the 
problem of describing all matrices which are left invariant under the QR trans- 
formation is in general rather difficult. 

The purpose of this note is to point out that with a preliminary reduction to 
Hessenberg form both difficulties disappear. We show first that singular matrices 
reveal their zero eigenvalues, one per iteration. Secondly we describe all matrices 
which are invariant. 

A given square matrix A (real or complex) may be reduced to Hessenberg form 
Al (aij = 0, i > j + 1) in a variety of ways. If any subdiagonal elements ai+1,j 
vanish then A, is said to be reduced and may be partitioned appropriately as 

H1 H12 *Hlma' 

(1) Al [Hi H2 H2m 

HmJ 
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where the Hi E UHM, the class of unreduced Hessenberg matrices. We include 
1 X 1 matrices in UHM. The QR algorithm acts independently on each Hi, 
i = 1, * *, m. If all the Hi are 1 X 1 then H is upper triangular and the algorithm 
terminates immediately. 

We denote the jth column of a matrix M by min. 

1. Singular Matrices. If Al is singular then at least one Hi must be singular. 
Let us consider a singular n X n matrix H E UHM. 

Any matrix A can be factorized into a product QR where Q is unitary and R is 
upper triangular with nonnegative diagonal elements. The jth column of Q, qj, 
is of unit length and in the direction of the orthogonal perpendicular from aj onto 
Span (al, ... , aj). Let H = QR. 

Because H E UHM the first (n - 1) columns of H are linearly independent. 
Since hj = qprpj we have 

i-i 

(2) rjj= hj - q,qrvj >O., = 1,. ,n- 1 

and 

(3) qj+1 1= rhj+1,j -# 0, j = 1, ... , n- 1. 

Since R is singular rnn = 0. However qn must be in the direction of the normal to 
the hyperspace Span (h1, . . *, hn1). Apart from the sign of qn , which may be fixed 
by requiring det (Q) > 0, we have a unique factorization, QR, whether or not H be 
singular. 

One QR transformation yields f = RQ and 

(4) h1jj_1 = rjjqjji, # 0, j = 2, * , n - 1, 

(5) fn n-1 = rnnqnn-i = 0, hnn = rnnqnn = 0- 

Thus after one transformation a zero eigenvalue is revealed and by (4) the 
leading principal (n - 1)-submatrix, Rn-i E UHM. Either Rn-1 is nonsingular 
or else another QR transform will yield another zero eigenvalue of H. If the al- 
gebraic multiplicity of the zero eigenvalue is m then exactly m QR transformations 
will reveal them and either terminate the algorithm (if m > n - 1) or leave a 
nonsingular matrix ftn-m E UHM. 

3. Invariant Matrices. The algorithm produces from A a sequence {AS } where 

(6) As = QR8 X As+i = RkQs = Ps*AP8, PS = Q1Q2 * * * Qs X 

and P8 is the unitary factor of AS. Here we assume that A is nonsingular. It is 
desired that A8 tend to upper triangular form as s - oo. 

Certainly if A is upper triangular with positive diagonal then A. = A for all s. 
Even if the diagonal is not positive the elements of A. vary only in signum and the 
form remains triangular. Thus triangular A are invariant in a trivial sense which 
we exclude by saying that the algorithm terminates immediately if A8 is triangular. 

We are concerned with invariant matrices which do not reveal their eigenvalues. 
From (6) we see that the convergence of P8 implies the convergence of A8. The 
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converse is not true however. If A is unitary then P = A', which need not co verge, 
although A, = A and so {As} converges (but not to triangular form). What we 
want is that P, converge (at least to within post multiplication by a diagonal 
unitary Ratrix). By (6) P8 = P Q, , and if P, - Pa then det (P O) = ?- and 
Q-1 I s -+ X Thus A R& , the desired triangular form. 

In practice however only As is available and its invariance is not distinguished 
by current programs from slow convergence. This has caused some computer 
programs based on the QR algorithm to fail unnecessarily. 

RELMARK. All members of UlIM are nonderogatory. The minor of the (1, n) 
element of H - zI vanishes for no value of z. Here n is the order of H. 

THEOREM 1. Let H E UHM. Then H is invariant under the basti QR algorithi 
if and onl ijf H is a scalar multiple of a unitary matrix 

Proof. We have just shown that unique factors Q and R exist such that H1- Q9 
Now if H is invariant then H = RQ and thus 

(7) HQ = QRQ = QH. 

Yet (7), together with H being nonderogatory, implies (see [2]) that 
a 

(8) Q = o(H), +() _ Od X 0. 
V==0 

By the Hamilton-Cayley theorem we may take d < n. Since H E UHM the 
(d + 1, 1) element of +(H) is 

q hi+,, i 0. 

Since Q E UHM, by (3), we must have d 1 and 

(9) Q = 0oI + A1H. 

On comparing first columns on each side of H - QR we find 

ril7hi, =o + Chin 

rII'lhnl =1h211 

whence 4o = 0, 4, = rll'. Thus H ri Q. Conversely if c-GH is unitary then Q9c 
HI R= I, and H is invariant. Q.E.D. 

Tow consider a general Hessenberg matrix in form (1). The eigenvalues are 
determined solely by the diagonal blocks Hi. The Hij X i > j, play no role in the 
algorithm. We begin with HM and test for invariance (H*Hm = aI, a > 0). 
If it is invariant some special treatment niust be used (possibly the QR algorithm 
on Hm - a"/2I). If it is not invariant we proceed with the algorithm. On complet- 
ing Hm we consider H, -, and so on, until all the Hi have been resolved. 

3. Shifts of Origin. In practice Francis uses an extension of the basic algorithm 
which employs origin shifts to improve the convergence rate (when the basic al- 
gorithm does converge). We now restrict ourselves to real matrices in U HM and 
ask when they are invariant under this extended algorithm. We have for one 
double step 
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A= Q*HQQ 

QR = H12 - H + pI, 

where ar and p are parameters depending only on the choice of origin shift. 
Now Q may happen to be derogatory although H still is not. By [2] if It = H 

then Q is a polynomial in H. Proceeding as in the proof of Theorem 1 we find that 
first 

Q = sboI + 01H + 42H2 

and then 

(10) riQ= pI-crH + H2. 

Initially Francis puts a = p = 0. Thus H2 = rjnQ and therefore H = aQi, Qi 
orthogonal. 

A fortiori the elements h nln yhn l hn n_1, and h do not change after one 
step. On the second step according to his strategy, Francis would put 

a = hn-ln + hnn X 

(11) hn-ln-ihnn-hnn-,hn-1,n 

By (10) we shall not have invariance unless pI - orH + H2' =Q2, Q2 orthogonal. 
Being nonderogatory and normal H has distinct eigenvalues. We take n > 3 and 
it follows that the mapping t -+ 4(t) = p - at + {2 must take the whole circle of 
radius xx, center the origin, into the concentric circle of radius f3. Consideration of 
the cases - = pa, bia shows that 

(12) rP 0. 

What does this decree for the last two rows of H? We have 
(i) his = a-y # 0, y to be determined, 
(ii) 2'Y2 + I hn 2 a2 since cv-'H is orthogonal, 
(iii) both eigenvalues of 

hnn- hnn / 
vanish, 

(iv) row (n- 1) is orthogonal to row n. 
It may be verified that conditions (i)-(iv) imply y = 1. We have proved the 

following 
THEOREM 2. A real Hessenberg matrix of the form (1) is invariant under the 

extended algorithm of Francis if and only if each Hi, i = 1, . * *, m is a scalar mul- 
tiple of an orthogonal matrix whose last two rows are of the form 

0O ... 0 1 0 OX 

(0 , 0 0 1 00 

For those strategies which shift by (11) at each step, including the first, we 
have invariance whenever, for each Hi, i = 1, * , * 
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H -2_ OHi + pI 

is a multiple of an orthogonal matrix. 
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